Изобретение относится к области биотехнологии, а именно к получению генно-инженерного инсулина человека для изготовления лекарственных препаратов, применяемых при лечении сахарного диабета. Способ осуществляют путем культивирования штамма-продуцента гибридного белка, содержащего проинсулин человека, Escherichia coli BL21/pPINS07(BL07) или Escherichia coli JM109/pPINS07, разрушения клеток дезинтеграцией, отделения телец включения, содержащих гибридный белок. Далее проводят предварительную отмывку телец включения, одновременное растворение белка и восстановление дисульфидных связей в буфере с 5-10 мМ дитиотреитола и 1 мМ ЭДТА, ренатурацию и очистку ренатурированного гибридного белка ионообменной хроматографией. Расщепление гибридного белка проводят совместным гидролизом трипсином и карбоксипептидазой Б при массовом соотношении гибридного белка, трипсина и карбоксипептидазы Б 4000:0,6:0,9. Очистку инсулина проводят гидрофобной хроматографией или обращенно-фазовой высокоэффективной жидкостной хроматографией с последующей гель-фильтрацией, а выделение инсулина — кристаллизацией в присутствии солей цинка. Изобретение позволяет сократить процесс получения генно-инженерного инсулина человека и увеличить его выход.
Формула изобретения
Способ получения генно-инженерного инсулина человека, включающий ферментацию штамма-продуцента гибридного белка, содержащего проинсулин человека, разрушение клеток дезинтеграцией, отделение телец включения, содержащих гибридный белок, предварительную отмывку телец включения, одновременное растворение белка и восстановление дисульфидных связей в буфере с 5-10 мМ дитиотреитола и 1 мМ ЭДТА, ренатурацию и очистку ренатурированного гибридного белка ионообменной хроматографией, расщепление гибридного белка совместным гидролизом трипсином и карбоксипептидазой Б, очистку инсулина гидрофобной хроматографией или обращенно-фазовой высокоэффективной жидкостной хроматографией с последующей гель-фильтрацией и выделение инсулина кристаллизацией в присутствии солей цинка, отличающийся тем, что в качестве штамма-продуцента используют штамм бактерий Escherichia coli BL21/pPINS07(BL07) или Escherichia coli JM109/pPINS07, ферментацию проводят до достижения культурой оптической плотности 15 ОЕ, ренатурацию осуществляют в течение 48 ч, а расщепление гибридного белка проводят совместным гидролизом трипсином и карбоксипептидазой Б при массовом соотношении гибридного белка, трипсина и карбоксипептидазы Б 4000:0,6:0,9.
Белковая инженерия, получение инсулина
Биотехнология – самый последний шаг в осуществлении давнего стремления человечества использовать природные процессы для улучшения жизни людей. Биотехнология революционизирует каждую область медицины от диагностики до лечения любого заболевания. Она помогает изучать жизненные процессы на молекулярном уровне и в будущем перейти от предположений к точной диагностике и лечению.
Основные задачи, которые решает медицинская биотехнология в медицине:
· сбор и получение информации: диагностикумы, биосенсоры, использование биотехнологических решений и приемов для получения информации (понятие о биотехнологическом приеме);
· профилактика заболеваний;
· получение собственно лекарственных средств (технологии получения инсулина, витамина С, витамина D2, резерпина, биоженьшеня, производство антибиотиков, витаминов, гормонов и др).
Мировой рынок продукции медицинской биотехнологии бурно развивается. Новейшие продукты этого типа — генно-инженерные лекарства и вакцины. Отличные перспективы у российских производителей иммунодиагностических средств нового типа. За последние несколько лет появились их новые виды — биологические микрочипы. Это диагностикумы, которые позволяют в сжатые сроки и с очень высоким качеством диагностировать одновременно десятки и сотни возбудителей инфекционных заболеваний, токсинов или генетических дефектов. Самый эффективный и недорогой тип микрочипа в мире создан именно у нас в стране. Если учесть, что рынок ДНК-диагностики развивается сейчас бурными темпами, то наше участие в нем могло бы стать крайне выгодным.
Емкость российского рынка эксперты оценивают в 90- 100 млрд руб., его потребности удовлетворяются сейчас лишь на 40-45%, в том числе за счет отечественных производителей примерно на 12-13%. Степень удовлетворения потребностей рынка в фармацевтической биотехнологии составляет 51,3%, пищевых и кормовых добавках — от 22 до 40%, в остальных отраслях — и того меньше.
Лекарственные средства (ЛС) – вещества или их смеси природного, синтетического или биотехнического происхождения, которые применяются для предотвращения беременности, профилактики, диагностики и лечения заболеваний людей или для изменения состояния и функций организма.
К лекарственным средствам относятся субстанции; ГЛС (лекарственные препараты); гомеопатические средства; средства, которые применяются для диагностики возбудителей заболеваний, а также борьбы с возбудителями заболеваний или паразитами; лекарственные косметические средства и лекарственные добавки к пищевым продуктам.
По своему происхождению лекарственные средства делятся на две основные группы:
I. Природные сырьевые материалы растительного, животного и минерального происхождения, прошедшие первичную обработку (очистка от примесей, сушка, сортировка).
Относятся: лекарственное растительное сырье – валерьяновый корень, цветы ромашки, ягоды малины, камеди (абрикосовая камедь), бальзамы (терпентин); лекарственное сырье животного происхождения – железы внутренней секреции домашних животных.
II. Лекарственные вещества, полученные в результате переработки природных сырьевых материалов или целенаправленного синтеза.
II группа делится на следующие группы:
1. Химические препараты. По своей природе это индивидуальные химические вещества, а по своему происхождению – продукты синтеза или очищенные природные вещества, которые являются лекарственными веществами – натрия хлорид, натрия сульфат, серебра нитрат, соляная и серная кислоты, натрия гидрокарбонат, калия перманганат, натрия тиосульфат и т.д.
2. Химико-фармацевтические препараты (ХФП). По своей природе это также индивидуально химические вещества. Получаются в результате органического синтеза, иногда весьма сложного. Входят: сульфаниламидные препараты (стрептоцид, норсульфазол), противотуберкулезные средства (фтивазид), снотворные и анестезирующие вещества, противомалярийные средства (бигумаль). К ХФП относятся также биологически активные вещества, выделенные в чистом виде из сырьевых материалов растительного и животного происхождения (алкалоиды и гликозиды). Отдельную группу представляют препараты радиоактивных изотопов, например препараты радиоактивного йода.
3. Препараты антибиотиков. Антибиотики являются продуктами жизнедеятельности различных микроорганизмов и получаются в результате биологического синтеза при выращивании микроорганизмов на питательных специальных средах. Широко известны антибиотики микробного происхождения (пенициллин, стрептомицин, биомицин, грамицидин). Некоторые из антибиотиков получают синтетически (метициллин, оксациллин). Широким спектром антибактериального действия обладают антибиотики группы цефалоспоринов.
4. Витаминные препараты. Среди них имеются как химически индивидуальные синтетические вещества (аскорбиновая кислота, тиамин, никотиновая кислота, цианокобаламин и др.), так и сложные комплексы веществ (концентраты, экстракты, сиропы).
5. Органопрепараты. Получаются из органов, тканей и соков животного организма. Являются сложными комплексами веществ, содержащими в качестве биологически активных соединений гормональные вещества. Некоторые из них удалось выделить в чистом виде (например, адреналин). Ряд гормонов получают синтетически (половые гормоны). К органопрепаратам относятся также ферменты (пепсин).
6. Вакцины и сыворотки. Это иммунобиологические препараты, вырабатываемые институтами вакцин и сывороток, институтами эпидемиологии, микробиологии и гигиены, а также рядом СЭС.
7. Продукты первичной переработки лекарственного сырья. Относятся: эфирные масла, жиры и жирные масла, получаемые из частей растений и животных.
8. Галеновые препараты. К ним относятся препараты сложного химического состава, приготовляемые путем извлечения из природных лекарственных сырьевых материалов растительного и животного происхождения и содержащие БАВ с др. веществами. Это разные экстракты, настойки, настойки, некоторые сиропы, ароматные воды и т.д. Особую подгруппу составляют новогаленовые препараты, представляющие собой извлечения (экстракты и настойки), но освобожденные от балластных веществ.
Получение инсулина
В настоящее время в мире, по данным ВОЗ (Всемирной организации здравоохранения), насчитывается около 110 млн людей, страдающих диабетом. И эта цифра в ближайшие 25 лет может удвоиться. Диабет- страшное заболевание, которое вызывается нарушением работы поджелудочной железы, вырабатывающей гормон инсулин, необходимый для нормальной утилизации содержащейся в пище углеводов. На начальных этапах развития болезни достаточно использовать меры профилактики, регулярно следить за уровнем сахара в крови, потреблять меньше сладкого. Однако для 10 млн пациентов показана инсулиновая терапия; они вводят в кровь препараты этого гормона. Начиная с двадцатых годов прошлого века для этих целей использовали инсулин, выделенный из поджелудочной железы свиньи и телят. Инсулин животных аналогичен человеческому, разница заключается в том, что в молекуле инсулина свиньи в отличие от человеческого в одной из цепей аминокислота треонин замещена аланином. Считается, что эти незначительные отличия могут вызвать у пациентов серьезные нарушения в работе почек, расстройстве зрения, аллергию). Кроме того, несмотря на высокую степень очистки, не исключена вероятность переноса вирусов от животных к людям. И, наконец, число больных диабетом растет так быстро, что обеспечить всех нуждающихся животным инсулином уже не представляется возможным. И это весьма дорогое лекарство.
Инсулин был впервые выделен из поджелудочной железы быка в 1921 г. Ф Бантингом и Ч. Бестом. Он сотсоит их двух полипептидных цепей, соединенных двумя дисульфидными связями. Полипептидная цепь А содержит 21 аминокислотный остаток, а цепь В- 30 аминокислотных остатков, молекулярная масса инсулина 5, 7 кDа.
Структура инсулина достаточно консервативна. Аминокислотная последовательность инсулина человека и многих животных различается всего на 1-2 аминокислоты. У рыб по сравнению с животными В- цепь больше и содержит 32 аминокислотных остатка.
Стоимость его была очень высока. Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200 — 250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.
Генетическая инженерия, родившись в начале 70-х годов, добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средсв. В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.
В 1978 году исследователи из впервые получили инсулин в специально сконструированном штамме кишечной палочки. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках E. coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму. Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.
У животных и человека инсулин синтезируется в β- клетках островков Ларгенганса. Гены, кодирующие этот белок у человека, локализованы в коротком плече 11-ой хромосомы. Зрелая инсулиновая мРНК состоит из 330 нуклеотидов, что соответствует 110 аминокислотным остаткам. Именно такое их количество содержит предшественник инсулина – препроинсулин. Он состоит из одной полипептидной цепи, на N- конце которой находится сигнальный пептид (24 аминокислоты), а между А- и В- цепями локализован С- пептид, содержащий 35 аминокислотных остатков.
Процесс созревания инсулина начинается в цисцернах эндоплазматического ретикулума, где под действием фермента сигналазы с N- конца отщепляется сигнальный пептид. Далее в аппарате Гольджи под действием эндопептидаз вырезается С-пептид и образуется зрелый инсулин. На транс- стороне аппарата Гольджи новосинтезированный гормон соединяется с цинком, образуя надмолекулярные структуры (три-, тетра, — пента- и гексамеры), перемещающиеся затем в секреторные гранулы.
Последние отделяются от аппарата Гольджи, перемещаются к цитоплазатической мемебране, ассоциируются с ней, и инсулин секретируется в кровяное русло. Скорость секреции гормона определяется концентрацией глюкозы и ионов Са2+ в крови. Адреналин подавляет освобождение инсулина, а такие гормоны, как ТТГ и АКТГ, напротив, способствуют его секреции. В крови инсулин находится в двух формах: свободной и связанной с белками, преимущественно с транферрином и α2- глобулином. Время «полужизни» инсулина составляет около пяти минут, причем распад начинается в крови, т.к. в эритроцитах имеются инсулиновые рецепторы и довольно активная инсулин- деградирующая система. Инсулиназа эритроцитов является Са- зависимой, тиоловой протеиназой, функционирующей совместно с глутатион- инсулин-ирансгидрогеназой, расщепляющей дисульфидные связи между двумя полипептидными цепями инсулина.
Фрагментация инсулина и его распад происходят преимущественно в печени, почках и плаценте.
Фрагменты инсулина обладают биологической активностью и участвуют в ряде метаболических процессов. Одной из осеовных функций инсулина является регуляйия транспорта глюкозы, аминокислот, ионов и др. метаболитов в клетки печени, почек, жировой ткани др. органов. Механизм действия этого гормона отличается от такового для др. пептидных гормонов и является уникальным в регуляции метаболических процессов. Инсулиновый рецептор представляет собой тетрамер, состоящий из двух α- и двух β-субъединиц, одна из которых обладает тироксиназной активностью. Инсулин при взаимодействии с α-субъединицами, расположенными на поверхности цитоплазматической мембраны, образует гормон- рецепторный комплекс. Конформационные изменения тетрамера приводят к активации трансмембранной β-субъединицы рецептора, обладающей тирозинкиназной активностью. Активная тирозинкиназа способна к фосфорилированию мембранных белков.Образуются мембранные каналы, через которые глюкоза и др. метаболиты проникают в клетки. Свободный инсулин под действием тканевой инсулиназы распадается на семь фракций, пять из которых обладают биологической активностью.
Кроме того, инсулин стимулирует ряд биосинтетических процессов: синтез нуклеотидов, нуклеиновых кислот, ферментов гликолиза и пентозофосфатного цикла, гликогена. В жировой ткани инсулин активирует процесс образования ацетил Ко А и жирных кислот. Он является одним из индукторов синтеза холестерина, глицерина и глицераткиназы.
Мутации в структуре инсулинового гена, нарушение механизмов посттранскрипционного и посттрансляционного процессинга приводят к образованию дефектных молекул инсулина и, как следствие, к нарушению обменных процессов, регулируемых данным гормоном. В результате развивается тяжелое заболевание – сахарный диабет.
Разработка технологии производства искусственного инсулина является поистине триумфом генетиков. Сначала с помощью специальных методов определили строение молекулы этого гормона, состав и последовательнгсть аминокислот в ней. В 1963 г. молекулу инсулина синтезировали с помощью биохимических методов. Однако осуществить в промышленном масштабе столь дорогостоящий и сложный синтез, включающий 170 химических реакций, оказалось сложно.
Поэтому в дальнейших исследованиях упор был сделан на разработку технологии биологического синтеза гормона в клетках микроорганизмов, для чего использовали весь арсенал методов генетической инженерии. Зная последовательность аминокислот в молекуле инсулина, ученые рассчитали, какой должна быть последовательность нуклеотидов в гене, кодирующем этот белок, чтобы получить нужную последовательность аминокислот. «Собрали» молекулу ДНК из отдельных нуклеотидов в соответствии с определенной последовательностью, «добавили» к ней регуляторные элементы, нкеобходимые для экспрессии гена в прокариотическом организме Е.coli, и встроили эту конструкцию в генетический материал микроба. В результате бактерия смогла вырабатывать две цепи молекулы инсулина, которые в дальнейшем можно было соединить с помощью химической реакции и получить полную молекулу инсулина.
Наконец, ученым удалось осуществить в клетках Е.coli биосинтез молекулы проинсулина, а не только ее отдельных цепей. Молекула проинсулина после биосинтеза способна соответствующим образом преобразовываться (формируются дисульфидные связи между цепями А и В), превращаясь в молекулу инсулина. Эта технология имеет серьезные преимущества, поскольку различные этапы экстракции и выделения гормона сведены до минимума. При разработке такой технологии была выделена информационная РНК проинсулина. Используя ее в качестве матрицы, с помощью фермента обратной транскриптазы синтезировали комплементарную ей молекулу ДНК, которая представляла собой практически точную копию натурального гена инсулина. После пришивания к гену необходимых регуляторных элементов и переноса конструкции в генетический материал Е.coli
Стало возможным производить инсулин на микробиологической фабрике в неограниченных количествах. Его испытания показали практически полную идентичность натуральному инсулину человека. Он намного дешевле препаратов животного инсулина, не вызывает осложнений.
Соматотропин — гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см. Ранее его получали из трупного материала, из одного трупа: 4 — 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы. в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как E. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов. Аналогичными методами получают также безопасные и дешевые вакцины.
На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.
Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом можно исправлять дефектные гены и лечить наследственные заболевания.
Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками. Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах. С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками. Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.
Сейчас даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.
Передозировка
В некоторых случаях введение инсулина приводит к внезапному снижению уровня сахара в крови. Проблема часто возникает из-за неправильного подбора дозы препарата.
Начальные симптомы гипогликемии:
- слабость;
- бледность кожи;
- состояние тревоги;
- головокружение;
- дезориентация;
- онемение рук, ног, языка и губ;
- дрожь конечностей;
- холодный пот;
- сильное чувство голода;
- головные боли.
Тремор
Внезапное ухудшение самочувствия
Если вы заметили у себя подобные симптомы, нужно быстро съесть что-нибудь, содержащее легкоусвояемые углеводы. Это может быть печенье, конфета, кусочек сахару или белого хлеба. Хорошо помогает в таких ситуациях сладкий чай.
При ухудшении состояния необходимо вызвать скорую помощь. Гипогликемия может закончиться комой или смертью пациента.
Врачебная помощь: струйное вливание в вену 40% раствора глюкозы, введение глюкагона.
Из чего производят инсулин
Инсулин – это основное лекарство для лечения больных сахарным диабетом 1 типа. Иногда он также используется для стабилизации состояния пациента и улучшения его самочувствия при втором типе заболевания. Это вещество по своей природе является гормоном, который способен в малых дозах влиять на обмен углеводов.
В норме поджелудочная железа вырабатывает достаточное количество инсулина, который помогает поддерживать физиологический уровень сахара в крови. Но при серьезных эндокринных нарушениях единственным шансом помочь больному часто становятся именно инъекции инсулина. Принимать его перорально (в виде таблеток), к сожалению, нельзя, поскольку он полностью разрушается в пищеварительном тракте и утрачивает биологическую ценность.
Что происходит в организме после введения препарата?
Соединяясь с рецептором клеточной мембраны, инсулин образует комплекс, который осуществляет следующие процессы:
- Улучшает внутриклеточную транспортировку глюкозы и облегчает ее усваивание.
- Способствует выделению ферментов, которые участвуют в переработке глюкозы.
- Снижает скорость образования в печени гликогена.
- Стимулирует жировой и белковый обмен.
В случае подкожного введения инсулин начинает действовать через 20-25 минут. Время действия препарата от 5 до 8 часов. В дальнейшем расщепляется ферментом инсулиназой и выводится с мочой. Препарат не проникает через плаценту и не попадает в грудное молоко.
Как найти в аптеке генно-инженерный инсулин?
Лекарство выпускается в виде раствора для парентерального введения:
«Биосулин» |
|
«Актрапид» |
|
«Генсулин» |
|
«Ринсулин» |
|
«Хумалог» |
|
Подобрать препарат инсулина с учетом индивидуальных особенностей пациента не составит труда.
Важно! Назначать инсулин может только врач! Он же рассчитывает дозу и контролирует состояние пациента во время курса лечения. Самолечение может привести к трагическим последствиям.
Побочные эффекты
В редких случаях при применении инсулина возможны следующие осложнения:
- аллергические реакции (крапивница, отек Квинке, зуд кожи);
- резкое снижение уровня сахара в крови (развивается из-за отторжения препарата организмом или в случае иммунологического конфликта);
- нарушения сознания;
- в тяжелых случаях возможно развитие гипогликемической комы;
- жажда, сухость во рту, вялость, снижение аппетита;
- гипергликемия (при применении препарата на фоне инфекции или лихорадки);
- покраснение лица;
- местные реакции в области введения (жжение, зуд, атрофия или разрастание подкожной жировой клетчатки).
Иногда адаптацию к препарату сопровождают такие нарушения, как отеки и нарушения зрения. Эти проявления, как правило, исчезают через несколько недель.
Правила использования
Чаще всего применяется подкожное введение инсулина.
В неотложных случаях лекарство вводится внутривенно.
При тяжелом состоянии пациента
Даже диабетик со стажем может допустить ошибку при применении препарата.
Для того, чтобы избежать осложнений, необходимо:
- Перед использованием проверить срок годности лекарства.
- Соблюдать рекомендации по хранению: запасные флаконы должны храниться в холодильнике. Начатый флакон можно хранить при комнатной температуре в темном месте.
- Убедитесь, что хорошо запомнили нужную дозировку: еще раз прочитайте рецепт врача.
- Перед инъекцией обязательно выпустить воздух из шприца.
- Кожа должна быть чистой, но использовать спирт для обработки нежелательно, так как он снижает эффективность препарата.
- Выбрать оптимальное место для инъекции. При введении под кожу живота препарат подействует быстрее. Медленнее всасывается инсулин при введении в ягодичную складку или плечо.
- Использовать всю площадь поверхности (профилактика развития местных осложнений). Расстояние между инъекциями должно быть не меньше 2 см.
- Захватить кожу в складку, чтобы снизить риск попадания в мышцу.
- Шприц вводить под кожу под углом, чтобы лекарство не вытекло.
- При инъекциях в живот инсулин короткого действия вводить за 20 минут до приема пищи. В случае выбора плеча или ягодицы – за тридцать минут до еды.
Вспомогательные компоненты
Помимо активного вещества, препараты инсулина содержат различные вспомогательные элементы. Они имеют не терапевтическое, а технологическое значение.
К ним относятся:
- пролонгаторы;
- антимикробные компоненты;
- стабилизаторы.
Первые предназначены для увеличения длительности действия активного компонента.
Антимикробные вещества продлевают срок службы препарата, предотвращая развитие микроорганизмов.
Стабилизаторы сохраняют постоянным уровень кислотности препарата.
Комплекс применяемых дополнительных веществ не одинаков в различных препаратах.
Инсулин оказывает неоценимую помощь диабетикам. Но его необходимо правильно применять. Дозировка лекарства проводится врачом с учетом индивидуальных особенностей состояния пациента (уровня глюкозы, физической активности человека, калорийности рациона, реакции организма на инсулин и т.д.). Передозировка препарата опасна тем, что может резко снизиться содержание глюкозы в кровяном русле, в результате чего человек рискует впасть в гипогликемическую кому.
Дополнительную информацию о производстве инсулина можно получить из видеоматериала.
Узнать, как правильно делать инсулиновые инъекции, можно из видео.
Интересное:
- Инструкция по применению «Росинсулина С», показания, противопоказания, состав, форма выпуска, побочные эффекты, аналоги, отзывы и цена
- Инструкция по применению инсулина: состав, аналоги, отзывы, цены в аптеках
- Общие правила подкожного введения инсулина, расчет дозы, методы определения гликемического индекса, подготовка к процедуре и выбор шприца
- Причины возникновения сахарного диабета 2 типа, методы диагностики, симптомы, осложнения, лечение и профилактика
- Классификация таблеток, применяемых от сахарного диабета, механизм действия, показания, противопоказания, побочные эффекты и меры предосторожности
- Этиология низкого инсулина, симптомы патологии, лечение состояния
- Повышение инсулина в сыворотке крови: что делать, норма показателя, симптоматика